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Abstract. In recent imaging genetic studies, much work has been focused on 
regression analysis that treats large-scale single nucleotide polymorphisms 
(SNPs) and quantitative traits (QTs) as association variables. To deal with the 
weak detection and high-throughput data problem, feature selection methods 
such as the least absolute shrinkage and selection operator (Lasso) are often 
used for selecting the most relevant SNPs associated with QTs. However, one 
problem of Lasso as well as many other feature selection methods for imaging 
genetics is that some useful prior information, i.e., the hierarchical structure 
among SNPs throughout the whole genome, are rarely used for designing more 
powerful model. In this paper, we propose to identify the associations between 
candidate genetic features (i.e., SNPs) and magnetic resonance imaging (MRI)-
derived measures using a tree-guided sparse learning (TGSL) method. The advan-
tage of our method is that it explicitly models the priori hierarchical grouping 
structure among the SNPs in the objective function for feature selection. Specifi-
cally, two kinds of hierarchical structures, i.e., group by gene and group by lin-
kage disequilibrium (LD) clusters, are imposed as a tree-guided regularization 
term in our sparse learning model. Experimental results on the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database show that our method not only 
achieves better predictions on the two MRI measures (i.e., left and right hippo-
campal formation), but also identifies the informative SNPs to guide the disease-
induced interpretation compared with other reference methods. 

1 Introduction 

Imaging genetics is the study of how individual genetic differences lead to differences 
in brain wiring, structure and intellectual function. Compared to case-control status, 
quantitative brain imaging measures are considered to be intermediate or endopheno-
types that are closer to the underlying biological mechanisms of the disease. 

Genome-wide association studies (GWAS) are increasingly being used to identify the 
associations between the high-throughput single nucleotide polymorphisms (SNPs) and 
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the quantitative traits (QTs) of imaging data [1]. To our knowledge, most existing 
GWAS-based methods focus on univariate analysis, which ignores the underlying inte-
racting relationship among SNPs and thus easily leads to a weak detection of associa-
tions. To address that problem, feature selection methods such as the least absolute 
shrinkage and selection operator (Lasso) [2] have been proposed to identify a subset of 
features (i.e., SNPs) for subsequent association analysis [3]. In Lasso, an L1-regularized 
term is used to enforce the ‘sparsity’ on the individual features, without considering the 
structural information among SNPs that exist throughout the whole genome. Recently, 
based on group Lasso method that extends Lasso by imposing the ‘group sparsity’ with 
L1/L2 norm-based regularization [4], an excellent method has been proposed in [5] to 
consider the group structure among SNPs. However, in that method [5], the hierarchical 
structure among SNPs that are different from flat group structure, are still not used for 
designing more powerful model.  

On the other hand, in machine learning community sparse learning methods with 
tree-structured regularizations have been proposed to consider the underlying multi-
level tree (i.e., hierarchical) structures among the inputs or outputs [6, 7]. The hierar-
chical structured sparsity has been implemented with hierarchical agglomerative cluster-
ing technique for multi-scale mining of functional magnetic resonance imaging (MRI) 
data [8]. Recently, those tree structure-based method have been successfully used for 
neuroimaging-based brain disease classification [9]. Motivated by the above works, in 
this paper, we propose to identify the associations between SNPs and MRI-derived 
measures using a tree-guided sparse learning (TGSL) method, which explicitly models 
the priori hierarchical tree structure among the SNPs in the objective function for fea-
ture selection. Here, the hierarchical tree structure is constructed based on the following 
priori knowledge, i.e., each tree node is for one feature group and different tree heights 
represent different levels of groups. Specifically, some SNPs are naturally connected via 
different pathways, and multiple SNPs located in one gene often jointly express certain 
genetic functionalities. Also, another genetic biology phenomenon, i.e., linkage disequi-
librium (LD) [10], describes the non-random distributions between alleles at different 
loci. Inspired by the above prior knowledge, the spatial gene and LD relationships 
among SNPs can be encoded into the tree regularization to guide the selection of  
relevant features for subsequent prediction. 

We apply the proposed TGSL method to the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) cohort for predicting well known disease-related hippocampal MRI-
derived measures with pre-selected candidate SNPs. The empirical results show that 
our method not only yield improved prediction performance, but also detect a com-
pact set of SNP predictors relevant to the imaging phenotypes.  

2 Method 

2.1 L1-Regularized Sparse Coding (Lasso) 

Assume we have M training subjects, with each represented by a N-dimensional fea-
ture vector (i.e. SNPs) and a response value (i.e. MRI-derived measure). Let X be a 
M×N feature matrix with the m-th row ݔ௠ ൌ ሺݔଵ௠, … , ,௡௠ݔ … , ே௠ሻݔ א ܴே denoting the 
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m-th subject’s feature vector, and y be the corresponding MRI-derived measures of M 
subjects. A linear regression model can be formulated as follows: 

 y ൌ Xα ൅ ε  (1) 

where α is a vector of coefficients assigned to the respective features, and ε is an 
error term. To encourage the ‘sparsity’ among features, in the Lasso method a L1-
norm regularization is imposed on the coefficients as follows [2]: 

 α ൌ argminఈ ݕ|| െ ଶ||ߙܺ ൅ λ||ߙ||ଵ  (2) 

where λ is a regularization parameter that controls the sparsity in the solution. The 
non-zero elements of α indicate that the corresponding input features are relevant to 
the regression outputs. 

2.2 Tree-Guided Sparse Learning 

It’s known that in feature selection it is promising to consider the grouping structure 
among features instead of treating them as individual units. In order to address the 
group-wise association among the features, sparsity can be enforced at the group level 
by a L1/L2 regularization, where the L2-norm is applied for the input features within 
the same group, while the L1-norm penalty is applied over the groups of input fea-
tures [4], as have done in [6] for imaging genetic study. However, it is not enough to 
capture the relationship among SNPs via simple group-wise association as a flat man-
ner, because there exist more complex structures (e.g., hierarchical tree structure) 
among SNPs. In this section, we introduce a tree-guided sparse learning (TGSL) me-
thod [6] for identifying the association between SNPs and imaging measures. In 
TGSL, a tree structure is used to represent the hierarchical spatial relationship among 
SNPs, with leaf nodes denoting SNPs and internal nodes denoting the groups of 
SNPs. Such hierarchical tree structures are shown in Fig.1.  
 
 
 

 
 
 
 
 

Fig. 1. Illustration on the tree-structured hierarchical relationship among SNPs: (a) group by 
gene, (b) group by linkage disequilibrium (LD) cluster 

As can be seen from Fig.1, two kinds of methods are used for the tree construction, 
i.e., (a) gene-based method, and (b) linkage disequilibrium (LD) cluster-based me-
thod. Specifically, in the gene-based method, some SNPs are naturally connected via 
different pathways and multiple SNPs located on one gene often jointly express cer-
tain genetics functionalities. So, SNPs are naturally divided into groups upon their 
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belonging genes. On the other hand, in LD cluster-based method, we generate the tree 
structure through estimating non-random association of alleles at different loci, and 
the relationship among SNPs in terms of genetic linkage are hence established [5]. 
Both gene and LD cluster groups could be encoded into the tree structure as shown in 
Fig.1.  

Assume that a hierarchical tree T has d depth levels, and there are ni nodes orga-
nized as ௜ܶ ൌ ሼܩଵ௜ , … , ௝௜ܩ , … , ௡೔௜ܩ ሽ  in the i-th level (0 ൑ i ൑ d). Different depth levels 
indicate the variant scales of feature groups. The index sets of the nodes at the same 
level have no overlapping while the index sets of a child node is a subset of its parent 
node. The TGSL method [6] can be formulated as:   

 α ൌ arg minఈ ݕ|| െ ଶ||ߙܺ ൅ λ ∑ ∑ ೕ೔||ଶ௡೔௝ୀଵௗ௜ୀ଴ீߙ||௝௜ݓ  (3) 

where ீߙೕ೔ is the set of coefficients assigned to the features within node ܩ௝௜, ݓ௝௜  is a 

predefined weight for node ܩ௝௜ and is usually set to be the same for each group at the 
same level, and the number of depth levels d is set to 3 in our experiments. A regula-
rization predefined by the tree structure can be imposed on the sparse learning optimi-
zation problem to encourage a joint selection of structured relevant SNPs.  

2.3 Imaging Phenotype Prediction 

We consider each SNP as a feature and each QT as a response variable, and formulate 
a regression model including multiple features (SNPs) and single response (MRI-
derived measures). Our goal is to reveal the relationship between these genetic fea-
tures and imaging phenotypes. Fig.2 shows the flowchart of the proposed method. 
First, to capture the hierarchical relationship of the SNPs in our candidate set, we 
construct a tree structure by naturally agglomerating related SNPs into gene groups or 
LD cluster groups, by using a hierarchical clustering technique. Then, the constructed 
tree structure is imposed on the regularization of tree-guided sparse learning (TGSL) 
model to select the relevant features. Finally, support vector regression (SVR) is used 
to predict the MRI-derived measures using the selected SNPs features. 
 

 

Fig. 2. The flowchart of the proposed method 
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3 Experiments 

In this section, we evaluate the effectiveness of the proposed method on the ADNI 
database (http://adni.loni.usc.edu/), where candidate SNPs are examined and selected 
to predict the response of the MR imaging phenotypes. In our experiments, baseline 
1.5 Tesla MRI scans and SNP data are included. This yields a total of 734 subjects, 
including 173 AD patients, 360 MCI patients and 210 healthy controls.   

3.1 Imaging Data and Pre-processing 

Standard image pre-processing is performed for all MR images. With atlas warping, 
we can partition each subject image into 93 regions of interests (ROIs). For each of 
the 93 ROIs, we compute the GM tissue volume from the subject’s MR image. A 
detailed description on acquiring MRI data from ADNI as used in this paper can be 
found in [11]. For identifying QTs, two well-known MRI phenotypes, i.e., left and 
right hippocampal formation, are used in our experiments. 

3.2 SNP Genotyping and Pre-processing 

Genome-wide genotyping data are available for the full set of ADNI subjects. The 
620901 SNPs data, used in this study, are genotyped using the Human 610-Quad 
BeadChip (Illumina, Inc., San Diego, CA) [12]. We ignore the SNPs defining the 
APOE e4 variant which are not included in the original genotyping chip. Only SNPs, 
belonging to the top 11 AD candidate genes listed on reference [13,14] and the Alz-
Gene database (www.alzgene.org) as of Jan 10, 2014, are selected after the standard 
quality control (QC) and imputation steps. Additionally, we apply filter rules to the 
genotype data to remove rare SNPs (minor allele frequency < 0.05), violations of 
Hardy-Weinberg Equilibrium (HWE p < 10-6), and poor call rate (< 90%). Data are 
further “phased” to impute any missing individual genotypes after filtering using the 
MaCH program [15]. After that, candidate SNPs on the genes listed at 1000Genomes 
website (http://browser.1000genomes.org/) are used to select a subset of SNPs.  

As we introduced before, we form two kinds of tree structures of SNPs: 1) SNPs 
annotated within the same gene (yielding 107 SNPs from 11 genes); 2) SNPs within 
the LD hierarchical cluster. For group by gene, since all SNPs had been divided into 
different genes naturally we use this natural groups to construct tree. For group by 
LD, We first compute the correlation (i.e., r2) between paired SNPs by Plink tool, and 
then perform agglomerative hierarchical clustering based on pairwise distances (i.e., 
1−r2) among SNPs to get the hierarchical tree. 

3.3 Experimental Settings 

To reduce the computational cost, we constrain that the group weights are set to be the 
same for each group at the same level and the values are tuned by nested cross-validation. 
As for Lambda, we determine its values corresponding to the number of selected SNPs 
from 10 to 100 with approximate step of 10. In our experiment, we use Lasso, TGSL-
gene (denoting TGSL with gene grouped tree structure) and TGSL-LD (denoting TGSL 
with LD cluster grouped tree structure) methods to select a subset of features (i.e., SNPs) 
to predict the regression responses for the test data. The performance of each trial is  
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assessed with root mean squared error (RMSE), a widely used criterion in regression 
analysis. Average RMSE result is calculated based on 10-fold cross validation.  

3.4 Results 

We compare our proposed methods (including TGSL-gene and TGSL-LD) against 
standard Lasso and group Lasso (including GroupLasso-gene and GroupLasso-LD) 
feature selection method. For testing the regression performance with respect to dif-
ferent level of selected features in all five methods, we adjust the regularization  
parameter to control the sparsity. Fig.3 reports the RMSE for regression on left hippo-
campal formation and right hippocampal formation by adopting a polynomial model 
to fit all the data obtained by different regularization parameters. As can be seen from 
Fig. 3, the proposed TGSL-gene and TGSL-LD methods outperform the Lasso and 
group Lasso methods. TGSL methods can get the best RMSEs at top 10 SNPs selec-
tion in the quantitative assessment. 
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Fig. 3. Comparison of RMSE with respect to different number of selected SNPs by L1-
regularized Lasso, GroupLasso-gene, GroupLasso-LD, the proposed TGSL-gene and TGSL-
LD in prediction on (a) left hippocampal formation, (b) right hippocampal formation. 

The regression coefficients for the top 10 selected SNPs by each approach on the 
MRI-derived measures (including left and right hippocampal formation volume) are 
plotted in Fig.4. The group Lasso methods are trend to select the entire gene or LD clus-
ters which pick up most SNPs with an excessive constraint, e.g., the only two SNPs are 
selected with the GroupLasso-gene method for the best performances. Thus，the group 
Lasso methods are  much more sensitive to the definition of their groups.  

As illustrated in the Fig.4, the PICALM-rs11234532are significantly associated 
with the predictions on left and right hippocampal formation with the proposed me-
thods in the experiment. As can be seen from Fig. 4, TGSL prefer selecting more 
SNPs on PICLAM. As PICLAM is a new Aβ toxicity modifier gene, the more SNPs 
on PICLAM have been detected by the proposed TGSL method are significantly as-
sociated with risk of late-onset Alzheimer disease (LOAD) [16]. The rs10501608 in 
PICALM is also associated with LOAD risk in the genome-wide SNP linkage and 
association studies [17]. Among the top 10 SNPs selected by TGSL-gene, PICALM-
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rs11234495, PICALM-rs713346 and PICALM-rs10792820 are detected on left hip-
pocampal formation, while PICALM-rs2077815, PICALM-rs11234495 and 
PICALM-rs527162 show the strongest association with the right hippocampal forma-
tion. It’s worth noting that these SNPs are also reported in other related heritable neu-
rodevelopmental disorders [18]. 

 

 

 

 

Lasso GL-gene GL-LD TGSL-gene TGSL-LD

CR1-rs1408077

BIN1-rs17014873

BIN1-rs2276575

BIN1-rs13430599

BIN1-rs13426725

BIN1-rs17014923

BIN1-rs873270

EPHA1-rs10952549

CLU-rs10101779

MS4A4E-rs7929057

MS4A4E-rs7127662

PICALM-rs10898427

PICALM-rs11234495

PICALM-rs10501604

PICALM-rs713346

PICALM-rs10792820

PICALM-rs10792821

PICALM-rs11234532

PICALM-rs10501608

APOE-rs405509

APOE-rs439401
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 

 

 

Lasso GL-gene GL-LD TGSL-gene TGSL-LD

BIN1-rs873270

CD2AP-rs12523687

EPHA1-rs11767557

CLU-rs10101779

MS4A4E-rs7929057

PICALM-rs618679

PICALM-rs2077815

PICALM-rs10898427

PICALM-rs11234495

PICALM-rs10501604

PICALM-rs713346

PICALM-rs7938033

PICALM-rs10792820

PICALM-rs527162

PICALM-rs10792821

PICALM-rs11234532

PICALM-rs10501608

APOE-rs405509

APOE-rs439401

CD33-rs3826656

CD33-rs33978622

CD33-rs1354106

CD33-rs1803254
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Fig. 4. Regression coefficients for the top 10 selected SNPs on (a) left hippocampal formation 
and (b) right hippocampal formation prediction by L1-regularized Lasso, GroupLasso-gene 
(GL-gene for short), GroupLasso-LD (GL-LD for short), TGSL-gene and TGSL-LD.  

4 Conclusion 

In this paper, we investigate the potential of exploiting tree-guided sparse learning 
(TGSL) method for identifying the associations between SNPs and MRI-derived 
measures, given hierarchical tree structure among SNPs. Specifically, two kinds of 
methods, i.e., TGSL-gene and TGSL-LD are developed based on grouping by the 
gene and linkage disequilibrium (LD) clusters, respectively. Experimental results on 
the ADNI database show that our method not only achieves better prediction perfor-
mances on the MRI-derived hippocampal formation volume measures, but also identi-
fies informative SNPs biomarkers to guide the disease interpretation compared with 
other reference methods.  
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